3.381 \(\int \frac{1}{x (a+b x^3) \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=85 \[ \frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a \sqrt{b c-a d}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a \sqrt{c}} \]

[Out]

(-2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a*Sqrt[c]) + (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c -
a*d]])/(3*a*Sqrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0758255, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {446, 86, 63, 208} \[ \frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a \sqrt{b c-a d}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a*Sqrt[c]) + (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c -
a*d]])/(3*a*Sqrt[b*c - a*d])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 86

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), In
t[(e + f*x)^p/(a + b*x), x], x] - Dist[d/(b*c - a*d), Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] &&  !IntegerQ[p]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (a+b x^3\right ) \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a}-\frac{b \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a d}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a d}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a \sqrt{c}}+\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.0777833, size = 81, normalized size = 0.95 \[ \frac{2 \left (\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{\sqrt{c}}\right )}{3 a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*(-(ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]]/Sqrt[c]) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])
/Sqrt[b*c - a*d]))/(3*a)

________________________________________________________________________________________

Maple [C]  time = 0.009, size = 453, normalized size = 5.3 \begin{align*}{\frac{{\frac{i}{3}}b\sqrt{2}}{a{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ad-bc}\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{b}{2\,d \left ( ad-bc \right ) } \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}}-{\frac{2}{3\,a}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ){\frac{1}{\sqrt{c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x)

[Out]

1/3*I*b/a/d^2*2^(1/2)*sum(1/(a*d-b*c)*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/
3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2
*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/
3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi
(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*b/
d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha
-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_
alpha=RootOf(_Z^3*b+a))-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))/a/c^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{3} + a\right )} \sqrt{d x^{3} + c} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.68685, size = 948, normalized size = 11.15 \begin{align*} \left [\frac{c \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b d x^{3} + 2 \, b c - a d + 2 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{\frac{b}{b c - a d}}}{b x^{3} + a}\right ) + \sqrt{c} \log \left (\frac{d x^{3} - 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right )}{3 \, a c}, \frac{2 \, c \sqrt{-\frac{b}{b c - a d}} \arctan \left (-\frac{\sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{-\frac{b}{b c - a d}}}{b d x^{3} + b c}\right ) + \sqrt{c} \log \left (\frac{d x^{3} - 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right )}{3 \, a c}, \frac{c \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b d x^{3} + 2 \, b c - a d + 2 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{\frac{b}{b c - a d}}}{b x^{3} + a}\right ) + 2 \, \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right )}{3 \, a c}, \frac{2 \,{\left (c \sqrt{-\frac{b}{b c - a d}} \arctan \left (-\frac{\sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{-\frac{b}{b c - a d}}}{b d x^{3} + b c}\right ) + \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right )\right )}}{3 \, a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/3*(c*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b
*x^3 + a)) + sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3))/(a*c), 1/3*(2*c*sqrt(-b/(b*c - a*d))*
arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3
+ c)*sqrt(c) + 2*c)/x^3))/(a*c), 1/3*(c*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*
c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) + 2*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c))/(a*c), 2/3*(c*sqrt
(-b/(b*c - a*d))*arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + sqrt(-c)*arctan(s
qrt(d*x^3 + c)*sqrt(-c)/c))/(a*c)]

________________________________________________________________________________________

Sympy [A]  time = 14.1218, size = 70, normalized size = 0.82 \begin{align*} - \frac{2 \operatorname{atan}{\left (\frac{\sqrt{c + d x^{3}}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{3 a \sqrt{\frac{a d - b c}{b}}} + \frac{2 \operatorname{atan}{\left (\frac{\sqrt{c + d x^{3}}}{\sqrt{- c}} \right )}}{3 a \sqrt{- c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

-2*atan(sqrt(c + d*x**3)/sqrt((a*d - b*c)/b))/(3*a*sqrt((a*d - b*c)/b)) + 2*atan(sqrt(c + d*x**3)/sqrt(-c))/(3
*a*sqrt(-c))

________________________________________________________________________________________

Giac [A]  time = 1.12294, size = 107, normalized size = 1.26 \begin{align*} -\frac{2}{3} \, d{\left (\frac{b \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} a d} - \frac{\arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{a \sqrt{-c} d}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/3*d*(b*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a*d) - arctan(sqrt(d*x^3 + c)/s
qrt(-c))/(a*sqrt(-c)*d))